Evaluating the Effects of Shadow Detection on QuickBird Image Classification and Spectroradiometric Restoration
نویسندگان
چکیده
Shadows in high resolution imagery create significant problems for urban land cover classification and environmental application. We first investigated whether shadows were intrinsically different and hypothetically possible to separate from each other with ground spectral measurements. Both pixel-based and object-oriented methods were used to evaluate the effects of shadow detection on QuickBird image classification and spectroradiometric restoration. In each method, shadows were detected and separated either with or without histogram thresholding, and subsequently corrected with a k-nearest neighbor algorithm and a linear correlation correction. The results showed that shadows had distinct spectroradiometric characteristics, thus, could be detected with an optimal brightness threshold and further differentiated with a scene-based near infrared ratio. The pixel-based methods generally recognized more shadow areas and with statistically higher accuracy than the object-oriented methods. The effects of the prior shadow thresholding were not statistically significant. The accuracy of the final land cover classification, after accounting for the shadow detection and separation, was significantly higher for the pixel-based methods than for the object-oriented methods, although both achieved similar accuracy for the non-shadow classes. Both radiometric restoration algorithms significantly reduced shadow areas in the original satellite images.
منابع مشابه
A Robust Strucutural Fingerprint Restoration
Fast and accurate ridge detection in fingerprints is essential to each AFIS (Automatic Fingerprint Identification System). Smudged furrows and cut ridges in the image of a finger print are major problems in any AFIS. This paper investigates a new online ridge detection method that reduces the complexity and costs associated with the fingerprint identification procedure. The noise in fingerprint...
متن کاملA Novel Processing Chain for Shadow Detection and Reconstruction in Vhr Images
Image may contain shadow, which can lead to serious problem for full exploitation of image. This paper proposes A Novel Processing Chain to solve this problem. The main aim of this chain process is not only detect shadow region form image but also remove shadow region and reconstruct shadow less image. In this chain process, initially we classified shadow vs. nonshadow region by using binary cl...
متن کاملShadow Detection Using Object Oriented Segmentation, Its Analysis And Removal From High Resolution Remote Sensing Images
Very high resolution satellite images available from satellites such as QuickBird, IKONOS etc are usually affected with shadows. These shadows reduces the information content of the images. In this paper, an object oriented shadow detection method is used to detect the shadows. In this method each object in the input image is extracted through a segmentation process. Suspected shadows are detec...
متن کاملShadow Detection from Very High Resoluton Satellite Image Using Grabcut Segmentation and Ratio-band Algorithms
Very-High-Resolution (VHR) satellite imagery is a powerful source of data for detecting and extracting information about urban constructions. Shadow in the VHR satellite imageries provides vital information on urban construction forms, illumination direction, and the spatial distribution of the objects that can help to further understanding of the built environment. However, to extract shadows,...
متن کاملTerrestrial Hyperspectral Image Shadow Restoration through Lidar Fusion
Acquisition of hyperspectral imagery (HSI) from cameras mounted on terrestrial platforms is a relatively recent development that enables spectral analysis of dominantly vertical structures. Although solar shadowing is prevalent in terrestrial HSI due to the vertical scene geometry, automated shadow detection and restoration algorithms have not yet been applied to this capture modality. We inves...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 5 شماره
صفحات -
تاریخ انتشار 2013